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REPARAMETRIZATION 
INVARIANT IN SCET

Two types of ambiguities:

(b)Any choice of    and    satisfying           ,            ,              are      
equally good.

n n̄ n2 = 0 n̄2 = 0 n · n̄ = 2

Strong interaction processes involving highly energetic particles can be described within
an effective field theory framework known as the Soft-Collinear Effective Theory (SCET) [1,
2, 3, 4]. SCET has been used to simplify proofs of classical factorization theorems [5],
provide the first all-orders proof of factorization in B̄ → Dπ decays [6], and facilitate the
resummation of Sudakov logarithms in B and Υ decays [1, 2, 7].

Suppose a set of light hadrons are created in a hard-scattering process. The hadrons
are assumed to have a large energy Q " ΛQCD, and invariant mass ∼ ΛQCD. To a good
approximation each light hadron is composed of constituents nearly collinear to a light-like
vector n. To decompose collinear momenta it is necessary to define an auxiliary light-like
vector for an orthogonal direction, n̄, such that n · n̄ = 2. If for example, n is along the
positive z-axis, nµ = (1, 0, 0, 1), then one could choose n̄µ = (1, 0, 0,−1) or equally well
n̄µ = (3, 2, 2, 1). Since the perpendicular size of the hadron is ∼ 1/ΛQCD the momentum
P µ of a collinear constituent is (n · P, n̄ · P, P⊥) ∼ Q(λ2, 1, λ), where λ ∼ ΛQCD/Q. This
scaling holds for either choice of n̄ above. The SCET provides a systematic way of dealing
with the disparate scales Q " ΛQCD " (ΛQCD)2/Q. The momentum P µ of a fast particle is
decomposed as the sum of a large momentum pµ with n̄ · p ∼ λ0, pµ

⊥ ∼ λ, and n · p = 0 and
a smaller momentum kµ ∼ λ2:

P µ = pµ + kµ =
nµ

2
n̄ · (p + k) +

n̄µ

2
n · k + (pµ

⊥ + kµ
⊥) . (1)

The large momentum p is treated as a label on collinear fields, and the small residual mo-
mentum k is associated with the spatial variation of the fields. In this paper we show that
requiring invariance under the ambiguity in the decomposition in Eq. (1) has important
consequences for collinear operators in SCET. As examples, we show that this reparame-
terization invariance places important restrictions on the form of the leading order collinear
quark action, and fixes the anomalous dimensions of an infinite class of subleading terms.

The decomposition in Eq. (1) is similar to the one in heavy quark effective theory (HQET).
In HQET P µ = mvµ + kµ, where m is the heavy quark mass, the velocity vµ labels HQET
fields hv(x), and kµ is a residual momentum picked out by derivatives on hv. The ambiguity
in the decomposition of P µ leads to a reparameterization invariance [8]. This symmetry is
the remnant of invariance under the Lorentz generators vµMµν which were broken by the
introduction of the vector vµ (for the rest frame these generators are the boosts M0i = Ki).
Requiring that physics is invariant under the simultaneous change

vµ → vµ +
∆µ

m
, kµ → kµ − ∆µ (v · ∆ = 0) (2)

gives useful constraints on the form of the HQET Lagrangian and currents [8, 9, 10, 11, 12,
13, 14].

In SCET reparameterization invariance is more involved, because the collinear momen-
tum decomposition in Eq. (1) has a more complicated structure. In particular, HQET
reparameterization invariance only connects operators appearing at different orders in the
1/m expansion, while we will see that the counterpart in SCET also constrains the form of
operators appearing at any given order. From Eq. (1) two types of ambiguity are:

(a) The component decompositions, n̄ · (p + k) and (pµ
⊥ + kµ

⊥), are arbitrary by an order
Qλ2 amount, and any decomposition should yield an equivalent description.
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(a)             and            are arbitrary by an order      amount. 
in̄ · Dc → in̄ · Dc + Win̄ · DusW

†

iD⊥c → iD⊥c + WiD⊥usW
†

✓

n2 = 0 n̄2 = 0 n · n̄ = 2

Type (I) Type (II)
n → n + ∆⊥ n → n

n̄ → n̄ n̄ → n̄ + ε⊥

n · D → n · D + ∆⊥ ·D⊥ n · D → n · D

D⊥µ → D⊥µ −
∆⊥µ
2 n̄·D −

n̄µ
2 ∆⊥ ·D⊥ D⊥µ → D⊥µ −

ε⊥µ
2 n·D −

nµ
2 ε⊥ · D⊥

n̄ · D → n̄ · D n̄ · D → n̄ · D + ε⊥ ·D⊥

ξn →
(
1 + 1

4 ∆/⊥n̄/
)
ξn ξn →

(
1 + 1

2 ε/⊥ 1
n̄·D D/⊥

)
ξn

W → W W →
[(

1− 1
n̄·D ε⊥ ·D⊥

)
W

]

TABLE I: Summary of infinitesimal type I and II transformations from Ref. [8]. With multiple
collinear directions these transformations exist for each {ni, n̄i} pair. {table123}

eterization invariance. This invariance appears due to the ambiguity in the decomposition
of momenta in terms of basis vectors and in terms of large and small components. For a
collinear momentum the set of five transformations on the light-like basis vectors nµ and
n̄µ was given in Eq. (2). These infinitesimal changes preserve the relations n2 = 0, n̄2 = 0,
and n · n̄ = 2, and with the power counting {∆⊥, ε⊥, α} ∼ {λ, λ0, λ0} can have no physical
consequences on the description of an observable. The type-III boost simply ensures that
(#Nn) + (#Nn̄)− (#Dn) + (#Dn̄) = 0 where (#Nn) counts the number of factors of n in
the numerator of an operator, (#Dn̄) counts the numbers of n̄ factors in the denominator,
etc. With three collinear directions an example of a type-III RPI invariant is

n1 ·n̄2 n̄1 ·n̄3

n̄2 ·n̄3
. (20)

The type-I and type-II transformation of collinear field objects are summarized in Table I,
which we take from Ref. [8]. Since the factors induced by the transformation occur at
different orders in λ, demanding overall invariance of a physical process provides connections
between the Wilson coefficients of operators from different orders in the expansion.

When we couple collinear and usoft particles there is another ambiguity, associated with
the decomposition of a collinear momentum into large and small pieces. If the total mo-
mentum P µ of a collinear particle is decomposed into the sum of a large collinear pµ and a
small ultrasoft momentum kµ:

P µ = pµ + kµ =
nµ

2
n̄ · (p + k) +

n̄µ

2
n · k + (p⊥ + k⊥), (21)

then operators must be invariant under a transformation that takes

P → P + n̄ · $ , in̄ · ∂ → in̄ · ∂ − n̄ · $ ,
Pµ
⊥ → Pµ

⊥ + $µ
⊥ , i∂µ

⊥ → i∂µ
⊥ − $µ

⊥ . (22)

Here all operators and derivatives act on one or more collinear fields, and $µ is O(λ2) with
n·$ = 0. Examples of the infinitesimal transformation on fields and operators are

δ(λ0)
a χn = (i$ · x)χn , δ(λ1)

a Pα
⊥ = $α

⊥ , δ(λ2)
a P̄ = n̄·$ . (23)
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a P̄ = n̄·$ . (23)
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and heavy-to-light currents. Here we explore the consequences of invariance under the full set
of reparameterization transformations and extend the analysis of class (I) transformations
to higher orders in λ. In particular we show that the transformations in classes (II) and (III)
are necessary to rule out the possibility of additional operators in the lowest order collinear
Lagrangian that are allowed by power counting and gauge invariance.
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where the two-component collinear quark field ξn satisfies [1]

n/n̄/

4
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TRANSFORMATIONS UNDER RPI 

Type (I) Type (II) Type (III)
n → n + ∆⊥ n → n n → n + α n

n̄ → n̄ n̄ → n̄ + ε⊥ n̄ → n̄− α n̄

n · D → n · D + ∆⊥ ·D⊥ n · D → n · D n · D → n · D + α n · D

D⊥
µ → D⊥

µ −
∆⊥µ
2 n̄·D −

n̄µ
2 ∆⊥ ·D⊥ D⊥

µ → D⊥
µ −

ε⊥µ
2 n·D −

nµ
2 ε⊥ · D⊥ D⊥

µ → D⊥
µ

n̄ · D → n̄ · D n̄ · D → n̄ · D + ε⊥ ·D⊥ n̄ · D → n̄ · D − α n̄·D⊥

ξn →
(
1 + 1

4 ∆/⊥n̄/
)
ξn ξn →

(
1 + 1

2 ε/⊥ 1
n̄·D D/⊥

)
ξn ξn → ξn

W → W W →
[(

1− 1
n̄·D ε⊥ ·D⊥)

W
]

W → W

1

• The vector itself remains invariant

• The quark field                                                 remains invariant

Dµ → Dµ

ψ(x) =
∑

p

e−ip·x
[
1 +

1
n̄ · D

D/⊥
n̄/

2

]
ξn,p



WHAT IS RPI USEFUL FOR? Connect operators in a OPE
An example: scalar chiral-even operator S(q)

Expansion  in SCET

where p̃c = Q(0, 1, λ), are labels and the new field φc,p̃c is responsible for fluctuations with
momenta of order Q(λ2, λ2, λ2).

It is convenient to introduce a “label” operator Pµ [3] which acts on the collinear fields
and picks up their large momentum: Pµ ξn,p = ( n̄·p

2 nµ + pµ
⊥) ξn,p and Pµ, respectively. When

acting on a product of several fields, these operators give the difference between the total
label carried by the fields minus the total label of the complex conjugated fields.

We will also use a special notation which associates a momentum label index to an
arbitrary product of collinear fields. Our convention is

χn,ω ≡ [W †ξn]ω = [δ(ω − n̄·P)W †ξn] , [W †iD⊥cW ]ω = [δ(ω − n̄·P)W †iD⊥cW ] (6)

where δ(ω − n̄ · P) acts only inside the square brackets.
The collinear operators that we write in the following can include a nontrivial flavor

structure. When required, this will be denoted by a superscript showing the quark flavours.
Note, finally, that for each operator we can have the singlet and octet colour structure. We
will write explicitly only the former since the matrix elements of any octet operator between
the vacuum and a meson state vanishes.

At leading order in λ there are only three independent collinear operators, which can be
chosen as

JV ('ω) = χ̄n,ω1

n̄/

2
χn,ω2

, (7)

JA('ω) = χ̄n,ω1

n̄/

2
γ5χn,ω2

, (8)

J α
T ('ω) = χ̄n,ω1

n̄/

2
γα
⊥χn,ω2

, (9)

where γα
⊥ ≡ γα − nαn̄//2 − n̄αn//2 and 'ω = (ω1, ω2). Their transformation properties under

charge conjugation are

J (ud)
V,T (ω1, ω2) → −J (du)

V,T (−ω2,−ω1) , (10)

J (ud)
A (ω1, ω2) → J (du)

A (−ω2,−ω1) . (11)

At subleading order in λ, the number of allowed structures is much larger. It is convenient
to choose a basis of collinear operators with simple transformation properties under charge
conjugation. We choose the following four chiral-even collinear operators

Vα
1 ('ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)

†Wn

]

ω1

1

n̄·P†
γαχn,ω2

+ χ̄n,ω1
γα 1

n̄·P

[
W †

niD/⊥c

n̄/

2
ξn

]

ω2

, (12)

Vα
2 ('ω) =

[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

1

n̄·P†
χn,ω2

+ χ̄n,ω1

1

n̄·P

[
W †

niDα
⊥c

n̄/

2
ξn

]

ω2

, (13)

Aα
1 ('ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)

†Wn

]

ω1

1

n̄·P†
γαγ5χn,ω2

+ χ̄n,ω1
γαγ5

1

n̄·P

[
W †

niD/⊥c
n̄/

2
ξn

]

ω2

, (14)

Aα
2 ('ω) =

[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

1

n̄·P†
γ5χn,ω2

− χ̄n,ω1
γ5

1

n̄·P

[
W †

niDα
⊥c

n̄/

2
ξn

]

ω2

, (15)
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and the three chiral-odd operators

S(!ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)

†Wn

]

ω1

1

n̄·P†
χn,ω2

+ χ̄n,ω1

1

n̄·P

[
W †

niD/⊥c
n̄/

2
ξn

]

ω2

, (16)

P(!ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)

†Wn

]

ω1

γ5

n̄·P†
χn,ω2

+ χ̄n,ω1

γ5

n̄·P

[
W †

niD/⊥c
n̄/

2
ξn

]

ω2

, (17)

T αβ(!ω) =

[
ξ̄n

n̄/

2
(iDα

⊥c)
†Wn

]

ω1

γβ
⊥

n̄·P†
χn,ω2

− χ̄n,ω1

γβ
⊥

n̄·P

[
W †

niDα
⊥c

n̄/

2
ξn

]

ω2

, (18)

together with the corresponding colour octet operators which will be denoted by the same
letter and a colour index a. We include the factors 1/n̄·P and 1/n̄·P† in the definition of
the operators, Eqs. (12)–(18), to make them invariant under the transformation n → nα,
n̄ → n̄/α (type-III reparameterization invariance).

These operators are not the most general collinear gauge invariants at O(λ). In analogy
to the heavy-to-light current considered in Ref. [11], it is possible to write also three-particle
operators, which contain three collinear gauge invariant factors. Their Dirac structure is
again restricted by the effective theory constraint n/ξn = 0, which leaves two possible chiral-
even operators

Vα
3 (!ω) = χ̄n,ω1

n̄/

2
[

1

n̄·P
W †iDα

⊥W ]ω3
χn,ω2

= χ̄n,ω1

n̄/

2

[(
1

n̄·P

)2

W †ign̄βG
βαW

]

χn,ω2
(19)

Aα
3 (!ω) = χ̄n,ω1

n̄/

2
γ5 [

1

n̄·P
W †iDα

⊥W ]ω3
χn,ω2

= χ̄n,ω1

n̄/

2
γ5

[(
1

n̄·P

)2

W †ign̄βG
βαW

]

χn,ω2

(20)

and a single chiral–odd operator

T αβ
3 (!ω) = χ̄n,ω1

n̄/

2
γα
⊥ [

1

n̄·P
W †iDβ

⊥W ]ω3
χn,ω2

= χ̄n,ω1

n̄/

2
γα
⊥

[(
1

n̄·P

)2

W †ign̄ρG
ρβW

]

χn,ω2
.

(21)

The factor 1/n̄·P assures again invariance under type-III reparameterization invariance.
The transformation properties of the subleading operators under charge conjugation are

V(ud)α
1,2 (ω1, ω2) → −V(du)α

1,2 (−ω2,−ω1) , (22)

A(ud)α
1,2 (ω1, ω2) → A(du)α

1,2 (−ω2,−ω1) , (23)

S(ud)α(ω1, ω2) → S(du)α(−ω2,−ω1) , (24)

P(ud)α(ω1, ω2) → −P(du)α(−ω2,−ω1) , (25)

T (ud)αβ(ω1, ω2) → T (du)αβ(−ω2,−ω1) . (26)

The corresponding operators of opposite charge conjugation properties can be constructed
by changing the relative sign of the two terms in Eqs. (12)-(18). They will be denoted with
a tilde, e.g.

Ṽα
1 (!ω) =

[
ξ̄n

n̄/

2
(iD/⊥c)

†Wn

]

ω1

1

n̄·P†
γαχn,ω2

− χ̄n,ω1
γα 1

n̄·P

[
W †

niD/⊥c
n̄/

2
ξn

]

ω2

, (27)
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LO

NLO}
S(q) = CJV +

2∑

i=1

Di (qαVα
i ) +

2∑

i=1

D̃i (qαṼα
i ) + E (qαVα

3 )

Hardmeier, Lunghi, Pirjol, Wyler hep-ph/0307171

We impose RPI: δRP S(q) = 0

All the Wilson coefficients are connected!

δRP

[
CJV +

2∑

i=1

Di (qαVα
i ) +

2∑

i=1

D̃i (qαṼα
i ) + E (qαVα

3 )

]
= 0



identity. At LO and NLO the currents are
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where the matrices TA are generators of SU(3) with an implied sum on A and χf
n has a

collinear quark with flavor f , whereas χn carries the flavor of quark from the full theory
current. We impose the RPI type-III invariance in Eq. (31) on all operators by multiplying
by an appropriate power of n·v. The basis in Eqs. (39,40,41) is valid whether or not we take
v⊥ = 0. The v⊥ = 0 choice only effects the basis of Dirac structures.

The 11 operators in Eqs. (40,41) can be compared with the 15 field structures in the

basis of Ref. [12]. We have no analog of their J (2)
1,2,3,7 currents which have an explicit xµ

because with momentum labels the multipole expansion is performed directly in momentum
space [45]. Correspondingly, our J (2b) and J (2c) currents have no analogs in their basis.
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• it is hard to calculate

• if we have more n there is a set of RPI for 

each one

x ~ 1

Q

µ n1

n2

n3

FIG. 1: Three collinear jets labelled by vectors nµ
i .

fig:jets

multiple n̄µ
i vectors. The definition of ⊥ in Eq. (1) is relative to n and n̄, and for this reason

we used the notation pµ
n⊥, with n·pn⊥ = n̄·pn⊥ = 0. When it is clear which n and n̄ we are

referring to we will simply write pµ
⊥ for pµ

n⊥. Reparameterization constraints arise because
the decomposition in Eq. (1) is not unique. We can shift ni by a small amount and still
have a suitable vector for the i’th jet. We also have a large amount of freedom in the choice
of n̄i. For each {n, n̄} pair the most general set of RPI coordinate transformations which
preserves the relations n2 = 0, n̄2 = 0, and n · n̄ = 2 is

(I)

{
nµ → nµ + ∆⊥

µ

n̄µ → n̄µ
(II)

{
nµ → nµ

n̄µ → n̄µ + ε⊥µ
(III)

{
nµ → (1 + α) nµ

n̄µ → (1− α) n̄µ
, (2)

where the five infinitesimal parameters {∆⊥
µ , ε⊥µ , α}, and satisfy n̄ · ε⊥ = n · ε⊥ = n̄ · ∆⊥ =

n · ∆⊥ = 0. To ensure that n provides an equivalent physical description of the collinear
direction for these particles requires the power counting {∆⊥

µ , ε⊥µ , α} ∼ {λ1, λ0, λ0} [8]. Thus
n can only be shifted by a small amount, while parametrically large values of α and ε⊥µ are
allowed.

In B-meson decays, constraints from reparameterization invariance in SCET have been
derived for heavy-to-light currents with parameters v and n, at the first subleading order in
Refs. [7, 9, 10], and to second order in Ref. [11]. Results for light-light SCET currents with
one collinear direction n, were derived at first subleading order in Ref. [12]. The extension of
RPI relations to collinear operators involving light quark masses was developed in Ref. [13].

In hard-scattering processes, deep inelastic scattering (DIS) provides a familiar context
where the construction of an operator basis requires an invariance under reparamaterizations
of a light-like direction. For a discussion of this, see the review [14]. These constraints
become more valuable at higher orders in the expansion, being particularly constraining
on the basis of twist-four operators derived in Refs. [15–18]. In the language used below
this classic DIS analysis corresponds to the determination of the RPI-completion of matrix
elements of operators depending on one light-like direction, 〈p|Oi(n)|p〉, up to twist-four.
In SCET the corresponding analysis is done at the level of operators Oi(n, n̄), and these
operators apply to a class of hard scattering processes with one energetic hadron or jet, of
which DIS is an example.

The goal of our paper is to provide a simple procedure for constructing the RPI-
completion of operators Oi(ni, n̄i, vi) that depend on multiple light-like vectors {ni, n̄i} and

3

Is there a better way to find these constraints? YES!

If we found RPI OBJECTS we can construct currents with them

Drawbacks



RPI IN HQET

To construct invariants under Eq. (22) which still have nice gauge transformation properties
we can simply use the combined covariant derivatives discussed in Ref. [21]

iDµ
⊥ = iDµ

n⊥ + iD⊥µ
us , in̄·D = P̄n + in̄·Dus . (24)

Note that reparameterization constraints associated with transformation of the Wilson line
Yn are automatically enforced by the other constraints. For example, prior to the field
redefinition only the combination in·D = in ·∂ +gn ·Aus +gn ·An appears acting on collinear
fields, a type-I transformation connects this to a D⊥n , and Eq. (24) connects this to the iD⊥

us

that one would find by direct transformation of Yn.
Finally we review RPI for a time-like vector from HQET [6]. The momentum P µ of a

heavy quark is decomposed as P µ = mvµ + kµ, where m is the heavy quark’s mass, vµ is its
velocity, and kµ is a residual momentum of order mλ2. For an infinitesimal βµ ∼ λ2 with
v · β = 0, the shifts

vµ → vµ + βµ and kµ → kµ −mβµ, (25)

can have no physical consequences. This implies invariance under the infinitesimal change
hv → hv + δhv with δhv = (imβ · x + β//2)hv. A superfield can be constructed which is
invariant under the full transformation [6]

Hv(x) = e−imv·x
[

1√
2(1 + v ·V/|V|)

(
1 +

/V /v

|V|

)]
hv(x) (26)

where

Vµ = vµ + iDµ
us/m . (27) {VH}

Using this superfield gives operators O = O[Hv(x), Dµ] that are invariant under reparam-
eterizations of the time-like vector. At the first non-trivial order Hv = e−imv·x(1 + i/
D/(2m) + . . .)hv. Note that for heavy quarks no dynamic component of the momentum
is the same size as the hard fluctuations, so there is no analog of the δ-functions in Eq. (15)
which is the main complication we face in constructing invariant operators in SCET.2

III. RPI INVARIANT OBJECTS FOR SCET
{sec:INV}

To construct an OPE the standard procedure is to build a basis of operators and assign
a Wilson coefficient to each operator. Afterward one can impose RPI to this current order
by order and find relations among Wilson coefficients of operators at different orders. On
the contrary what we do is to start with RPI invariant objects. They contain operators
at different orders. We build an OPE only with RPI invariant objects, assign a Wilson
coefficient to each one and subsequently expand them. In this way right away we have
relation between Wilson coefficients of operators of different orders. The number of inde-
pendent Wilson coefficients is equal to the number of independent RPI operators. We will
construct RPI invariant basis up to λ3. They are given by objects whose expansion is linear
independent and different from zero up to λ3.

2 Note that when we have two two auxillary time-like vectors, v and v′, invariant Wilson coefficients must
be functions C(V · V ′) [22].
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Momentum of an heavy quark

It is invariant under
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that one would find by direct transformation of Yn.
Finally we review RPI for a time-like vector from HQET [6]. The momentum P µ of a

heavy quark is decomposed as P µ = mvµ + kµ, where m is the heavy quark’s mass, vµ is its
velocity, and kµ is a residual momentum of order mλ2. For an infinitesimal βµ ∼ λ2 with
v · β = 0, the shifts

vµ → vµ + βµ and kµ → kµ −mβµ, (25)

can have no physical consequences. This implies invariance under the infinitesimal change
hv → hv + δhv with δhv = (imβ · x + β//2)hv. A superfield can be constructed which is
invariant under the full transformation [6]

Hv(x) = e−imv·x
[

1√
2(1 + v ·V/|V|)

(
1 +

/V /v

|V|

)]
hv(x) (26)

where

Vµ = vµ + iDµ
us/m . (27) {VH}

Using this superfield gives operators O = O[Hv(x), Dµ] that are invariant under reparam-
eterizations of the time-like vector. At the first non-trivial order Hv = e−imv·x(1 + i/
D/(2m) + . . .)hv. Note that for heavy quarks no dynamic component of the momentum
is the same size as the hard fluctuations, so there is no analog of the δ-functions in Eq. (15)
which is the main complication we face in constructing invariant operators in SCET.2

III. RPI INVARIANT OBJECTS FOR SCET
{sec:INV}

To construct an OPE the standard procedure is to build a basis of operators and assign
a Wilson coefficient to each operator. Afterward one can impose RPI to this current order
by order and find relations among Wilson coefficients of operators at different orders. On
the contrary what we do is to start with RPI invariant objects. They contain operators
at different orders. We build an OPE only with RPI invariant objects, assign a Wilson
coefficient to each one and subsequently expand them. In this way right away we have
relation between Wilson coefficients of operators of different orders. The number of inde-
pendent Wilson coefficients is equal to the number of independent RPI operators. We will
construct RPI invariant basis up to λ3. They are given by objects whose expansion is linear
independent and different from zero up to λ3.

2 Note that when we have two two auxillary time-like vectors, v and v′, invariant Wilson coefficients must
be functions C(V · V ′) [22].
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OUR RPI OBJECTS FOR SCET

A. Construction of RPI and Gauge Invariant objects

We now construct reparameterization invariant objects in SCET whose leading terms
should correspond to the fields in Eq. (9). These are then generalized to objects that are
simultaneously RPI and gauge invariant whose leading terms give the objects in Eqs. (11,15).
For simplicity only collinear objects are considered in this section. Pulling out the large
phases from the collinear quark field and gluon field strength, and decomposing the full
theory field into collinear sectors,

ψ(x) =
∑

n

e−ix·Pnψn(x) , Gµν(x) =
∑

n

e−ix·PnGµν
n (x) . (28)

The invariant n-collinear quark and field strength are easy to identify

ψn =

(
1 +

1

n ·Dn
/D⊥

n

n/

2

)
ξn , ig Gn

µν =
[
iDn

µ, iDn
ν

]
. (29)

Under the transformations in Table I for {n, n̄}, the quark field ψn remains invariant, while
the gluon tensor is invariant because the vector Dµ

n is invariant. Here n/ξn = 0, and the
term in ψn with a ⊥-covariant derivative corresponds to the two small (or bad) components
of the full fermion field. To reproduce an operator like Eq. (16) we also need an invariant
δ-function. A natural choice is

δ (ω − 2iDn · q) = Wnδ
(
ω − n·q P̄n

)
W †

n + . . . , (30) {DEL}

where q is a parameter of the process studied. (30) reproduces the δ-function appearing in
Eq. (15) at lowest order. However, rather than working with this object we find it more
convenient to work with a pure derivative δ-function

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (31)

and a reparameterization invariant Wilson line,

Wn = Wn e−iRn . (32)

Here the operator Rn is built of n-collinear gluon fields,

Rn = Rn

[
P̄n,Pµ

n⊥, in·∂, igBµ
n⊥, ign·Bn

]
, (33)

and is Hermitian, dimensionless, and collinear gauge invariant. Furthermore, in the power
counting Rn starts with a term at O(λ). We leave the explicit construction of Rn to the
next section, and for the remainder of this section take these properties as given.

Considering the collinear gauge transformation properties of ψn and Wn, we see that
they transform the same way as ξn and Wn, and that Gµν

n transforms as a field strength.
Using these transformation properties we form analogs of the results in Eq. (15) that are
simultaneously RPI and gauge invariant, giving the superfields

Ψn,ω ≡
[
δ(ω − 2q ·i∂n)W†

nψn

]
, Gµν

n,ω ≡
[ 1

ω
W†

nG
µν
n Wn δ(ω − 2q ·i

←−
∂n)

]
. (34) {SF}
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•    is a parameter of the processqµ
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RPI Wilson Line:

Rn

Rn = Rn

[
Pn,Pµ

n⊥, in · ∂, igBµ
n⊥, ign · Bn, q

]
•     is Hermitian, dimensionless, and collinear gauge invariant



RPI AND GAUGE INVARIANT OBJECTS

In a similar way, using the Lagrangian for the collinear gluon field [4], we can find the
equation of motion for Gµν

n

[i∂νGνµ
n ] =

[
1

(q · i∂)

(
g2TAΨ̄nT

AγµΨn + [qαGα
n ν , (q · i∂)Gµν

n ]
)]

. (70) {EOM2}

The QCD Bianchi identity for Gµν
n is

D̂µ
nGνσ

n + D̂ν
nGσµ

n + D̂σ
nGµν

n = 0 , (71)

closing it with γµ, it gives the following relation

i∂/Gµν
n = γαqβ

(
Gαβ

n Gµν
n − Gβ[µ

n Gν]α
n

)
− γαi∂[µGν]α

n . (72) {BI}

The equation (69)(70)(72) are the RPI equivalent of the equations of motion (18).

C. Expansion of General currents

In the last section we constructed RPI objects. Here we want to stress the relations
between gauge invariant operators and RPI operators. The most general gauge invariant
basis in SCET up to order λ4 can be built out of this operators:

O(0) = χ̄n1,ω1Ξχn2,ω2 ,
O(1a) = χ̄n1,ω1Ξ

αP⊥†
n1αχn2,ω2 ,

O(1b) = χ̄n1,ω1Ξ
αP⊥n2,αχn2,ω2 ,

O(1c) = χ̄n1,ω1Ξ
β(igB⊥n3β)ω3χn2,ω2 ,

O(2a) = χ̄n1,ω1Ξ
αα′P⊥†

n1αP⊥n2α′χn2,ω2 ,

O(2b) = χ̄n1,ω1Ξ
αα′P⊥†

n1αP
⊥†
n1α′χn2,ω2 ,

O(2c) = χ̄n1,ω1Ξ
αα′P⊥n2αP⊥n2α′χn2,ω2 ,

O(2d) = χ̄n1,ω1Ξ
αβP⊥†

n1α(igB⊥n4β)ω3χn2,ω2 ,

O(2e) = χ̄n1,ω1Ξ
βα(igB⊥n3β)ω3P⊥n2αχn2,ω2 ,

O(2f) = χ̄n1,ω1Ξ
αβ[P⊥n3α(igB⊥n3β)ω3 ]χn2,ω2 ,

O(2g) = χ̄n1,ω1Ξ(ign3 · Bn3)ω3χn2,ω2 ,
O(2h) = χ̄n1,ω1Ξ

ββ′
(igB⊥n3β)ω3(igB⊥n4β′)ω4χn2,ω2 ,

O(2i) = χ̄n1,ω1Ξ1χn2,ω2χ̄n3,ω3Ξ2χn4,ω4 , (73)

where the Dirac structure Ξ depend on the particular phenomenon studied. When we
do an OPE, in general we assign a Wilson coefficient at each gauge invariant operator
and try to find possible constraints imposing that the overall current is invariant under
reparameterization. A second way to find RPI constraints is to build RPI operators using
the RPI objects (28) and the vector momentum i∂µ = (nµ/2)P̄ + Pµ

⊥ + (n̄µ/2)(in · ∂), and
to use them in the OPE. Because each object is RPI by definition, his Wilson coefficient is
disconnected from the others, so the effective number of Wilson coefficients is equal to the
number of independent RPI currents. The number of constraint is equal to the number of
gauge invariant operators minus the number of RPI operators. As shown previously, also the
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Under the transformations in Table I for {n, n̄}, the quark field ψn remains invariant, while
the gluon tensor is invariant because the vector Dµ

n is invariant. Here n/ξn = 0, and the
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(
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)
W †
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, (33)
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next section, and for the remainder of this section take these properties as given.
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simultaneously RPI and gauge invariant, giving the superfields

Ψn,ω ≡
[
δ(ω − 2q ·i∂n)W†

nψn

]
, Gµν

n,ω ≡
[ 1

ω
W†

nG
µν
n Wn δ(ω − 2q ·i

←−
∂n)

]
. (34) {SF}
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• It is useful to label the 
collinear part of the 
momentum    ̄Pn

together with the Pµ
n label momentum operator and derivative operator i∂µ acting on these

gauge invariant structures. The fields in Eq. (11) are all post the field redefinition in Eq. (7).
It is convenient to be able to switch the collinear derivatives multiplied by Wilson lines for
gauge invariant field strengths, for which we use

iD⊥µ
n = Pµ

n⊥ + igBµ
n⊥ , i

←−D⊥µ
n = −P †µ

n⊥ − igBµ
n⊥ ,

in·Dn = in·∂ + ign·Bn , in·←−Dn = in·
←−
∂ − ign·Bn . (12)

Here the field strength tensors are

igBµ
n⊥ ≡

[ 1

Pn

[in̄ · Dn, iD⊥µ
n ]

]
, ign · Bn ≡

[ 1

P̄n
[in̄ · Dn, in · Dn]

]
, (13)

where the label operators and derivatives act only on fields inside the outer square brackets.
The presence of a hard interaction introduces a reference vector qµ, with |q2| = Q2 $

ΛQCD. This is a vector we can control that is external to the QCD dynamics. For example, in
DIS qµ would be the momentum transfer from the virtual photon. In B-decays, qµ encodes
the large mass of the decaying particle which at leading order is equivalent to the B-meson
momentum, qµ = pµ

B = mBvµ. In the presence of collinear fields a hard interaction can
introduce convolutions between the perturbatively calculable Wilson coefficient C(Q2) and
the matrix element of the collinear operators. In this case the amplitude, cross-section, or
decay rate has the form

A =

∫
dωi C(Q2, ωi) 〈O(ωi)〉 . (14)

The convolutions occur because a component of the hard momentum and of a collinear mo-
mentum or momenta are both O(λ0). Unless the large component of the collinear momentum
is fixed by momentum conservation in the matrix element, there will be an exchange of mo-
mentum between the hard and collinear components which is represented by a convolution
in the variable ωi. A gauge invariant momentum from the collinear fields can be picked out
by a delta function acting on one of the collinear objects in Eq. (11), such as [δ(ω − P̄)χn],
and traditionally in SCET a short hand notation is used for these products, χn,ω. Here
a slightly modified notation will be more useful. For n-collinear fields with n̄ · p ∼ λ0 we
need n̄ · q ∼ λ0 in order for there to be a convolution between these components. Since
Q2 $ ∆ΛQCD $ Λ2

QCD we know that n · q $ n · p. For our purposes it will be convenient
to use n · q as a fixed reference scale when introducing the shorthand notation with the
δ-function, so

χn,ω ≡
[

δ
(
ω−n·qPn

)
χn

]
,

(igBµ
⊥)ω ≡

[
igBµ

⊥ δ
(
ω−n·qP†

n

)]
,

(ign · B)ω ≡
[
ign · B δ

(
ω−n·qP†

n

)]
. (15)

Note that here ω has mass-dimension two. The advantage of these δ-functions over δ(ω− P̄)
is that they are type-III RPI invariant. As an example we have the bilinear scalar operator,

O(ω1, ω2) = χ̄n,ω1 n̄/ χn,ω2 . (16)
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(igBµ)ω ≡
[
igBµδ(ω − n · qP†

n)
]

To couple usoft degrees of freedom we define an usoft covariant derivative

iDµ
us = i∂µ + gAµ

us, , (6)

that can act on collinear fields. At lowest order the coupling to n-collinear fields can be
removed from the Lagrangian by the field redefinition [4]

ξn,p(x)→ Yn(x)ξn,p(x) , An,q(x)→ Yn(x)An,q(x)Y †(x) , (7)

with the ultrasoft Wilson line

Yn(xµ) = P exp
(
i g

∫ 0

−∞
ds n·Aus(x

µ + snµ)
)

. (8)

This field redefinition also organizes power corrections as gauge invariant products of
collinear and ultrasoft fields as we discuss in the next section. When care is taken, it can
be demonstrated that the final results are always independent of the choice of the reference
point for the Wilson line in the field redefinition [11] (the −∞ in Eq. (8)), though the same
choice should be used throughout the computation, and must be made on operators and on
the interpolating fields for the in/out states.

Operators will be formed from products of these fields. The importance of the operators
is determined by their power counting, which is determined by adding up contributions from
the fields that appear. The power counting for the fields and derivatives in SCETI is

ξn ∼ λ, (n·An, n̄·An, A
n⊥
n ) ∼ (λ2, 1, λ) , qus ∼ hus

v ∼ λ3, Aus ∼ λ2 ,
i∂µ ∼ λ2 , (in·∂, n̄·P ,Pn⊥) ∼ (λ2, 1, λ) , Wn ∼ Yn ∼ λ0 , (9) {pc1}

and can be used to construct operators for processes with multiple jets and at most one-
hadron. For a collinear hadron λ ∼ ΛQCD/Q, while λ is parametrically larger for a collinear
jet, namely λ ∼ ∆/Q with ΛQCD % ∆ % Q. For processes with two or more hadrons
the interactions in the theory SCETII must be considered. With a small parameter η ∼
ΛQCD/Q% 1 the power counting of fields in this theory is

ξn ∼ η, (n·An, n̄·An, A
n⊥
n ) ∼ (η2, 1, η) , qs ∼ hs

v ∼ η3/2, As ∼ η ,
i∂µ

s ∼ η , (in·∂, n̄·P ,Pn⊥) ∼ (η2, 1, η) , Wn ∼ Sn ∼ η0 . (10) {pc2}

We will only consider operators that are built out of fields in Eq. (9) or Eq. (10). It should
be noted that a succession of SCETI and SCETII theories needs to be considered in cases
with jets and energetic hadrons.

B. Gauge Invariant Field Products and Convolutions

For SCETI we want to build operators from the following structures, which are collinear
and usoft gauge invariant and homogeneous in the power counting:

χn ≡ W †
nξn, qn

us = Y †
n qus, Hn

v ≡ Y †
n hv, Dµ

n ≡ W †
nDµ

nWn , Dnµ
us ≡ Y †

n Dµ
usYn , (11) {objs}
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together with the Pµ
n label momentum operator and derivative operator i∂µ acting on these

gauge invariant structures. The fields in Eq. (11) are all post the field redefinition in Eq. (7).
It is convenient to be able to switch the collinear derivatives multiplied by Wilson lines for
gauge invariant field strengths, for which we use

iD⊥µ
n = Pµ

n⊥ + igBµ
n⊥ , i

←−D⊥µ
n = −P †µ

n⊥ − igBµ
n⊥ ,

in·Dn = in·∂ + ign·Bn , in·←−Dn = in·
←−
∂ − ign·Bn . (12)

Here the field strength tensors are

igBµ
n⊥ ≡

[ 1

Pn

[in̄ · Dn, iD⊥µ
n ]

]
, ign · Bn ≡

[ 1

P̄n
[in̄ · Dn, in · Dn]

]
, (13)

where the label operators and derivatives act only on fields inside the outer square brackets.
The presence of a hard interaction introduces a reference vector qµ, with |q2| = Q2 $

ΛQCD. This is a vector we can control that is external to the QCD dynamics. For example, in
DIS qµ would be the momentum transfer from the virtual photon. In B-decays, qµ encodes
the large mass of the decaying particle which at leading order is equivalent to the B-meson
momentum, qµ = pµ

B = mBvµ. In the presence of collinear fields a hard interaction can
introduce convolutions between the perturbatively calculable Wilson coefficient C(Q2) and
the matrix element of the collinear operators. In this case the amplitude, cross-section, or
decay rate has the form

A =

∫
dωi C(Q2, ωi) 〈O(ωi)〉 . (14)

The convolutions occur because a component of the hard momentum and of a collinear mo-
mentum or momenta are both O(λ0). Unless the large component of the collinear momentum
is fixed by momentum conservation in the matrix element, there will be an exchange of mo-
mentum between the hard and collinear components which is represented by a convolution
in the variable ωi. A gauge invariant momentum from the collinear fields can be picked out
by a delta function acting on one of the collinear objects in Eq. (11), such as [δ(ω − P̄)χn],
and traditionally in SCET a short hand notation is used for these products, χn,ω. Here
a slightly modified notation will be more useful. For n-collinear fields with n̄ · p ∼ λ0 we
need n̄ · q ∼ λ0 in order for there to be a convolution between these components. Since
Q2 $ ∆ΛQCD $ Λ2

QCD we know that n · q $ n · p. For our purposes it will be convenient
to use n · q as a fixed reference scale when introducing the shorthand notation with the
δ-function, so

χn,ω ≡
[

δ
(
ω−n·qPn

)
χn

]
,

(igBµ
⊥)ω ≡

[
igBµ

⊥ δ
(
ω−n·qP†

n

)]
,

(ign · B)ω ≡
[
ign · B δ

(
ω−n·qP†

n

)]
. (15)

Note that here ω has mass-dimension two. The advantage of these δ-functions over δ(ω− P̄)
is that they are type-III RPI invariant. As an example we have the bilinear scalar operator,

O(ω1, ω2) = χ̄n,ω1 n̄/χn,ω2 . (16)

7

together with the Pµ
n label momentum operator and derivative operator i∂µ acting on these

gauge invariant structures. The fields in Eq. (11) are all post the field redefinition in Eq. (7).
It is convenient to be able to switch the collinear derivatives multiplied by Wilson lines for
gauge invariant field strengths, for which we use

iD⊥µ
n = Pµ

n⊥ + igBµ
n⊥ , i

←−D⊥µ
n = −P †µ

n⊥ − igBµ
n⊥ ,

in·Dn = in·∂ + ign·Bn , in·←−Dn = in·
←−
∂ − ign·Bn . (12)

Here the field strength tensors are

igBµ
n⊥ ≡

[ 1

Pn

[in̄ · Dn, iD⊥µ
n ]

]
, ign · Bn ≡

[ 1

P̄n
[in̄ · Dn, in · Dn]

]
, (13)

where the label operators and derivatives act only on fields inside the outer square brackets.
The presence of a hard interaction introduces a reference vector qµ, with |q2| = Q2 $

ΛQCD. This is a vector we can control that is external to the QCD dynamics. For example, in
DIS qµ would be the momentum transfer from the virtual photon. In B-decays, qµ encodes
the large mass of the decaying particle which at leading order is equivalent to the B-meson
momentum, qµ = pµ

B = mBvµ. In the presence of collinear fields a hard interaction can
introduce convolutions between the perturbatively calculable Wilson coefficient C(Q2) and
the matrix element of the collinear operators. In this case the amplitude, cross-section, or
decay rate has the form

A =

∫
dωi C(Q2, ωi) 〈O(ωi)〉 . (14)

The convolutions occur because a component of the hard momentum and of a collinear mo-
mentum or momenta are both O(λ0). Unless the large component of the collinear momentum
is fixed by momentum conservation in the matrix element, there will be an exchange of mo-
mentum between the hard and collinear components which is represented by a convolution
in the variable ωi. A gauge invariant momentum from the collinear fields can be picked out
by a delta function acting on one of the collinear objects in Eq. (11), such as [δ(ω − P̄)χn],
and traditionally in SCET a short hand notation is used for these products, χn,ω. Here
a slightly modified notation will be more useful. For n-collinear fields with n̄ · p ∼ λ0 we
need n̄ · q ∼ λ0 in order for there to be a convolution between these components. Since
Q2 $ ∆ΛQCD $ Λ2

QCD we know that n · q $ n · p. For our purposes it will be convenient
to use n · q as a fixed reference scale when introducing the shorthand notation with the
δ-function, so

χn,ω ≡
[

δ
(
ω−n·qPn

)
χn

]
,

(igBµ
⊥)ω ≡

[
igBµ

⊥ δ
(
ω−n·qP†

n

)]
,

(ign · B)ω ≡
[
ign · B δ

(
ω−n·qP†

n

)]
. (15)

Note that here ω has mass-dimension two. The advantage of these δ-functions over δ(ω− P̄)
is that they are type-III RPI invariant. As an example we have the bilinear scalar operator,

O(ω1, ω2) = χ̄n,ω1 n̄/χn,ω2 . (16)

7

• In SCET we use      to 
build gauge invariant 
objects

Wn



RPI WILSON LINE

We calculate      in 3 steps

To calculate iRn instead that using the definition (39), we exploit the relation (41) and
calculate iRn order by order in λ. Substituting (32) in (41) we find

(q · iD) = e−iRn (q · i∂) eiRn . (42) {DRpartial}

Because of the Hermicity of iDµ and i∂µ, also Rn must be Hermitian. Applying the Baker-
Campbell-Hausdorff formula to (42) we obtain

(q · iD) = (q · i∂) +
∑

n=1

1

n
{(q · i∂), (iRn)n} , (43)

where

{A, Bn} = {[A, B], Bn−1} = [[· · · [A,

n︷ ︸︸ ︷
B, ]B, ] . . . , ]B] . (44)

We can write the λ expansion,

iRn =
∞∑

k=1

iR(k)
n ,

(q · iD) =
n̄ · q
2
P̄ + (q · P⊥) + (q · igB⊥) +

n · q
2

(n̄ · i∂) +
n · q
2

(n̄ · igB) ,

(q · i∂) =
n̄ · q
2
P̄ + (q · P⊥) +

n · q
2

(n̄ · i∂) . (45) {Lex}

(q · i∂) is a derivate operator, it means that when it acts in a commutator with (igBµ) we
have the identity

[(q · i∂), (igBµ)] = [(q · i∂)(igBµ)] , (46) {dercom}

where again the second brackets mean that the derivate acts only inside. Substituting the
formulas (45) and using the relation (46) we can solve the equation (42) for iR(k)

n . The first
two terms are

iR(1)
n =

[ 2

n·qPn

q⊥ ·(igB⊥n )
]
, (47) {R12}

iR(2)
n =

[ 1

n·qPn

(n̄·q) (nig ·Bn)
]
−

[ 4q⊥ ·Pn⊥

(n·qPn)2
q⊥ ·(igB⊥n )

]
+

[ 2

n·qPn

[[ 1

n·qPn

q⊥ ·(igB⊥n )
]
, q⊥ ·(igB⊥n )

]]
.

Similarly we can write the λ expansion of the invariant Wilson line

Wn =
∞∑

k=0

W(k)
n . (48) {lambdaW}

Using the the definition (32) and equations (47), the first terms in (48) are

W(0)
n = Wn , (49)

W(1)
n = −Wn(iR(1)

n ) , (50)

W(2)
n =

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
. (51)
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 3. we λ expand                               and solve order by order

Collinear Wilson Line: [(n̄ · D)Wn] = 0 Wn =

[
∑

perms

exp
(
−g

1
Pn

n̄ · An

)]
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iRn =
∞∑

k=1

iR(k)
n ,

(q · iD) =
n̄ · q
2
P̄ + (q · P⊥) + (q · igB⊥) +

n · q
2

(n̄ · i∂) +
n · q
2

(n̄ · igB) ,

(q · i∂) =
n̄ · q
2
P̄ + (q · P⊥) +

n · q
2

(n̄ · i∂) . (45) {Lex}

(q · i∂) is a derivate operator, it means that when it acts in a commutator with (igBµ) we
have the identity

[(q · i∂), (igBµ)] = [(q · i∂)(igBµ)] , (46) {dercom}

where again the second brackets mean that the derivate acts only inside. Substituting the
formulas (45) and using the relation (46) we can solve the equation (42) for iR(k)

n . The first
two terms are

iR(1)
n =

[ 2

n·qPn

q⊥ ·(igB⊥n )
]
, (47) {R12}

iR(2)
n =

[ 1

n·qPn

(n̄·q) (nig ·Bn)
]
−

[ 4q⊥ ·Pn⊥

(n·qPn)2
q⊥ ·(igB⊥n )

]
+

[ 2

n·qPn

[[ 1

n·qPn

q⊥ ·(igB⊥n )
]
, q⊥ ·(igB⊥n )

]]
.

Similarly we can write the λ expansion of the invariant Wilson line

Wn =
∞∑

k=0

W(k)
n . (48) {lambdaW}

Using the the definition (32) and equations (47), the first terms in (48) are

W(0)
n = Wn , (49)

W(1)
n = −Wn(iR(1)

n ) , (50)

W(2)
n =

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
. (51)
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.

Similarly we can write the λ expansion of the invariant Wilson line

Wn =
∞∑

k=0

W(k)
n . (48) {lambdaW}

Using the the definition (32) and equations (47), the first terms in (48) are
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n = Wn , (49)
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A. Construction of RPI and Gauge Invariant objects

We now construct reparameterization invariant objects in SCET whose leading terms
should correspond to the fields in Eq. (9). These are then generalized to objects that are
simultaneously RPI and gauge invariant whose leading terms give the objects in Eqs. (11,15).
For simplicity only collinear objects are considered in this section. Pulling out the large
phases from the collinear quark field and gluon field strength, and decomposing the full
theory field into collinear sectors,

ψ(x) =
∑

n

e−ix·Pnψn(x) , Gµν(x) =
∑

n

e−ix·PnGµν
n (x) . (28)

The invariant n-collinear quark and field strength are easy to identify

ψn =

(
1 +

1

n ·Dn
/D⊥

n

n/

2

)
ξn , ig Gn

µν =
[
iDn

µ, iDn
ν

]
. (29)

Under the transformations in Table I for {n, n̄}, the quark field ψn remains invariant, while
the gluon tensor is invariant because the vector Dµ

n is invariant. Here n/ξn = 0, and the
term in ψn with a ⊥-covariant derivative corresponds to the two small (or bad) components
of the full fermion field. To reproduce an operator like Eq. (16) we also need an invariant
δ-function. A natural choice is

δ (ω − 2iDn · q) = Wnδ
(
ω − n·q P̄n

)
W †

n + . . . , (30) {DEL}

where q is a parameter of the process studied. (30) reproduces the δ-function appearing in
Eq. (15) at lowest order. However, rather than working with this object we find it more
convenient to work with a pure derivative δ-function

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (31)

and a reparameterization invariant Wilson line,

Wn = Wn e−iRn . (32)

Here the operator Rn is built of n-collinear gluon fields,

Rn = Rn

[
P̄n,Pµ

n⊥, in·∂, igBµ
n⊥, ign·Bn

]
, (33)

and is Hermitian, dimensionless, and collinear gauge invariant. Furthermore, in the power
counting Rn starts with a term at O(λ). We leave the explicit construction of Rn to the
next section, and for the remainder of this section take these properties as given.

Considering the collinear gauge transformation properties of ψn and Wn, we see that
they transform the same way as ξn and Wn, and that Gµν

n transforms as a field strength.
Using these transformation properties we form analogs of the results in Eq. (15) that are
simultaneously RPI and gauge invariant, giving the superfields

Ψn,ω ≡
[
δ(ω − 2q ·i∂n)W†

nψn

]
, Gµν

n,ω ≡
[ 1

ω
W†

nG
µν
n Wn δ(ω − 2q ·i

←−
∂n)

]
. (34) {SF}
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 connects     with RPI      :  Wn Wn

RPI Wilson Line: Wn =

[
∑

perms

exp
(
−g

1
(q · i∂)

q ·An

)]

[(q ·D)Wn] = 0



EXPANSION RPI OBJECTS IN λ

δ function

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

(Taylor expansion)

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑
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(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +
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χn,ωa + p(1)
n χn,ω , (57)
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n χn,ω +

∑
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(n · q)
ωa + ωb
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n/

2
χn,ωa (58)

+
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ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
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For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−
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2
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The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
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k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑
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(n · q)
ω
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n/

2
χn,ωa +
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n χn,ω , (57)

Ψ(3)
n,ω =
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n χn,ω +
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n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
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ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
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For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
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+
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+
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{

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,
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=
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n

)
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where the first two terms are
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d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
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The expansion of the quark superfield is straightforward:

Ψ(1)
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For the gluon superfield first it is useful to expand W †GµνW :
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The expansion of the invariant Wilson line is therefore
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Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

Superfields

A. Construction of RPI and Gauge Invariant objects

We now construct reparameterization invariant objects in SCET whose leading terms
should correspond to the fields in Eq. (9). These are then generalized to objects that are
simultaneously RPI and gauge invariant whose leading terms give the objects in Eqs. (11,15).
For simplicity only collinear objects are considered in this section. Pulling out the large
phases from the collinear quark field and gluon field strength, and decomposing the full
theory field into collinear sectors,

ψ(x) =
∑

n

e−ix·Pnψn(x) , Gµν(x) =
∑

n

e−ix·PnGµν
n (x) . (28)

The invariant n-collinear quark and field strength are easy to identify

ψn =

(
1 +

1

n ·Dn
/D⊥

n

n/

2

)
ξn , ig Gn

µν =
[
iDn

µ, iDn
ν

]
. (29)

Under the transformations in Table I for {n, n̄}, the quark field ψn remains invariant, while
the gluon tensor is invariant because the vector Dµ

n is invariant. Here n/ξn = 0, and the
term in ψn with a ⊥-covariant derivative corresponds to the two small (or bad) components
of the full fermion field. To reproduce an operator like Eq. (16) we also need an invariant
δ-function. A natural choice is

δ (ω − 2iDn · q) = Wnδ
(
ω − n·q P̄n

)
W †

n + . . . , (30) {DEL}

where q is a parameter of the process studied. (30) reproduces the δ-function appearing in
Eq. (15) at lowest order. However, rather than working with this object we find it more
convenient to work with a pure derivative δ-function

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (31)

and a reparameterization invariant Wilson line,

Wn = Wn e−iRn . (32)

Here the operator Rn is built of n-collinear gluon fields,

Rn = Rn

[
P̄n,Pµ

n⊥, in·∂, igBµ
n⊥, ign·Bn

]
, (33)

and is Hermitian, dimensionless, and collinear gauge invariant. Furthermore, in the power
counting Rn starts with a term at O(λ). We leave the explicit construction of Rn to the
next section, and for the remainder of this section take these properties as given.

Considering the collinear gauge transformation properties of ψn and Wn, we see that
they transform the same way as ξn and Wn, and that Gµν

n transforms as a field strength.
Using these transformation properties we form analogs of the results in Eq. (15) that are
simultaneously RPI and gauge invariant, giving the superfields

Ψn,ω ≡
[
δ(ω − 2q ·i∂n)W†

nψn

]
, Gµν

n,ω ≡
[ 1

ω
W†

nG
µν
n Wn δ(ω − 2q ·i

←−
∂n)

]
. (34) {SF}
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The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

=
nµ

2

[
P̄igB⊥ν

]
−nν

2

[
P̄igB⊥µ

]
+

[
P̄igB⊥⊥µν

]
− n̄µ

2

nν

2

[
P̄ign · B

]
+

nµ

2

n̄ν

2

[
P̄ign · B

]
+O(λ3) .

(59) {EG}
Using (34), (D8) and (D22) we can write

G(1)µν
n,ω =

nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω , (60)

G(2)µν
n,ω =

1

ω
([Pµ

⊥(igBν
n⊥)ω]− [Pν

⊥(igBµ
n⊥)ω] + [(igBµ

n⊥)ω, (igBν
n⊥)ω]) +

n̄µnν − nµn̄ν

4(n · q) (ign · Bn)ω

+
∑

ωa

iR(1)
n,ω−ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)

−
∑

ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)
iR(1)

n,ω−ωa

+p(1)
n

(
nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω

)
. (61)

We now study the equations of motion of the RPI quark and gauge fields. The collinear
Lagrangian for the quark field is [2]:

Lq = ξ̄n

(
in ·Dn + iD/⊥n

1

in̄ ·Dn
iD/⊥n

)
ξn , (62) {Lagr1}

where a sum over n is implicit. We can write (62) in terms of ψ

Lq = ψ̄niD/n ψn , (63) {lagr2}

the equations of motion for ψ are
D/n ψn = 0 (64) {Eom1}

If we insert the identity WnW†
n and left multiply (64) by W†

n we obtain the equation of
motion for Ψn

D̂/n Ψn = 0 , (65) {Eom2}

where D̂ is the RPI and gauge invariant covariant derivate:

D̂µ
n ≡ eiRnDµ

ne−iRn . (66)

We can write

D̂µ
n = i∂µ + [D̂µ

n] , (67)

and it is easy to proof that

qνGνµ
n = [D̂µ

n] , (68)

so we can write the equation of motion (65) as

i∂/Ψn = qµγ
νGµν

n Ψn . (69) {EOM1}
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RPI Wilson line
λ0 λ1 λ2

The expansion of the invariant Wilson line is therefore

Wn = Wn −Wn(iR(1)
n ) + Wn

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
+ . . . . (52)

Using these R(k)
n ’s and Table I it is simple to check explicitly that Wn is RPI up to order

O(λ3). Note that we did not assign a power counting to q⊥, and that cases where q⊥ ∼ λ
causes further suppression of some of the terms in Eq. (47). For cases where q⊥ = 0 the
expansion starts at O(λ2).

We will also need the λ expansion of the invariant δ-function,

δ(ω − 2q · i∂n) = δ(ω − n·q P̄n − 2q⊥ ·P̄n⊥ − n̄·q in·∂) (53)

=
(
1 +

∞∑

k=1

p(k)
n

)
δ(ω − n·q P̄n) ,

where the first two terms are

p(1)
n = −2q⊥ ·Pn⊥

d

dω
, p(2)

n = 2(q⊥ ·Pn⊥)2 d2

dω2
− (n̄·q)(in·∂)

d

dω
. (54)

When combining the operator with the Wilson coefficient C(ωi) we can integrate by parts
to move these derivatives onto the coefficient to leave a simple δ-function in the operator.

Now we can expand the superfields (34). As for the others RPI objects, we can write the
λ expansion

Ψn,ω =
∞∑

k=1

Ψ(k)
n,ω, Gµν

n,ω =
∞∑

k=1

G(k)µν
n,ω . (55) {ESF}

The expansion of the quark superfield is straightforward:

Ψ(1)
n,ω = χn,ω , (56)

Ψ(2)
n,ω =

∑

ωa

(n · q)
ω

iD/⊥n,ωa−ω

n/

2
χn,ωa +

∑

ωa

iR(1)
n,ω−ωa

χn,ωa + p(1)
n χn,ω , (57)

Ψ(3)
n,ω =

∑

ωa

iR(2)
n,ω−ωa

χn,ωa + p(2)
n χn,ω +

∑

ωa,ωb

iR(1)
n,ωa−ωb−ω

(n · q)
ωa + ωb

iD/⊥n,ωb

n/

2
χn,ωa (58)

+
∑

ωa

p(1)
n iR(1)

n,ω−ωa
χn,ωa +

1

2

∑

ωa,ωb

R(1)
n,ωa−ωb−ωR(1)

n,ωb
χn,ω .

For the gluon superfield first it is useful to expand W †GµνW :

W †GµνW =
nµ

2
[in̄ · D, iD⊥ν ]−

nν

2
[in̄ · D, iD⊥µ] + [iD⊥µ, iD⊥ν ]

+
n̄µ

2

nν

2
[in · D, in̄ · D] +

nµ

2

n̄ν

2
[in̄ · D, in · D]

+
n̄µ

2
[in · D, iD⊥ν ]−

n̄ν

2
[in · D, iD⊥µ] =

14

To calculate iRn instead that using the definition (39), we exploit the relation (41) and
calculate iRn order by order in λ. Substituting (32) in (41) we find

(q · iD) = e−iRn (q · i∂) eiRn . (42) {DRpartial}

Because of the Hermicity of iDµ and i∂µ, also Rn must be Hermitian. Applying the Baker-
Campbell-Hausdorff formula to (42) we obtain

(q · iD) = (q · i∂) +
∑

n=1

1

n
{(q · i∂), (iRn)n} , (43)

where

{A, Bn} = {[A, B], Bn−1} = [[· · · [A,

n︷ ︸︸ ︷
B, ]B, ] . . . , ]B] . (44)

We can write the λ expansion,

iRn =
∞∑

k=1

iR(k)
n ,

(q · iD) =
n̄ · q
2
P̄ + (q · P⊥) + (q · igB⊥) +

n · q
2

(n̄ · i∂) +
n · q
2

(n̄ · igB) ,

(q · i∂) =
n̄ · q
2
P̄ + (q · P⊥) +

n · q
2

(n̄ · i∂) . (45) {Lex}

(q · i∂) is a derivate operator, it means that when it acts in a commutator with (igBµ) we
have the identity

[(q · i∂), (igBµ)] = [(q · i∂)(igBµ)] , (46) {dercom}

where again the second brackets mean that the derivate acts only inside. Substituting the
formulas (45) and using the relation (46) we can solve the equation (42) for iR(k)

n . The first
two terms are

iR(1)
n =

[ 2

n·qPn

q⊥ ·(igB⊥n )
]
, (47) {R12}

iR(2)
n =

[ 1

n·qPn

(n̄·q) (nig ·Bn)
]
−

[ 4q⊥ ·Pn⊥

(n·qPn)2
q⊥ ·(igB⊥n )

]
+

[ 2

n·qPn

[[ 1

n·qPn

q⊥ ·(igB⊥n )
]
, q⊥ ·(igB⊥n )

]]
.

Similarly we can write the λ expansion of the invariant Wilson line

Wn =
∞∑

k=0

W(k)
n . (48) {lambdaW}

Using the the definition (32) and equations (47), the first terms in (48) are

W(0)
n = Wn , (49)

W(1)
n = −Wn(iR(1)

n ) , (50)

W(2)
n =

[1

2
(iR(1)

n )2 − (iR(2)
n )

]
. (51)
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= Wne−iRn



RPI EQUATION OF MOTION

With some algebra...

=
nµ

2

[
P̄igB⊥ν

]
−nν

2

[
P̄igB⊥µ

]
+

[
P̄igB⊥⊥µν

]
− n̄µ

2

nν

2

[
P̄ign · B

]
+

nµ

2

n̄ν

2

[
P̄ign · B

]
+O(λ3) .

(59) {EG}
Using (34), (D8) and (D22) we can write

G(1)µν
n,ω =

nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω , (60)

G(2)µν
n,ω =

1

ω
([Pµ

⊥(igBν
n⊥)ω]− [Pν

⊥(igBµ
n⊥)ω] + [(igBµ

n⊥)ω, (igBν
n⊥)ω]) +

n̄µnν − nµn̄ν

4(n · q) (ign · Bn)ω

+
∑

ωa

iR(1)
n,ω−ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)

−
∑

ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)
iR(1)

n,ω−ωa

+p(1)
n

(
nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω

)
. (61)

We now study the equations of motion of the RPI quark and gauge fields. The collinear
Lagrangian for the quark field is [2]:

Lq = ξ̄n

(
in ·Dn + iD/⊥n

1

in̄ ·Dn
iD/⊥n

)
ξn , (62) {Lagr1}

where a sum over n is implicit. We can write (62) in terms of ψ

Lq = ψ̄niD/n ψn , (63) {lagr2}

the equations of motion for ψ are
D/n ψn = 0 (64) {Eom1}

If we insert the identity WnW†
n and left multiply (64) by W†

n we obtain the equation of
motion for Ψn

D̂/n Ψn = 0 , (65) {Eom2}

where D̂ is the RPI and gauge invariant covariant derivate:

D̂µ
n ≡ eiRnDµ

ne−iRn . (66)

We can write

D̂µ
n = i∂µ + [D̂µ

n] , (67)

and it is easy to proof that

qνGνµ
n = [D̂µ

n] , (68)

so we can write the equation of motion (65) as

i∂/Ψn = qµγ
νGµν

n Ψn . (69) {EOM1}
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Bianchi Identity

In a similar way, using the Lagrangian for the collinear gluon field [4], we can find the
equation of motion for Gµν

n

[i∂νGνµ
n ] =

[
1

(q · i∂)

(
g2TAΨ̄nT

AγµΨn + [qαGα
n ν , (q · i∂)Gµν

n ]
)]

. (70) {EOM2}

The QCD Bianchi identity for Gµν
n is

D̂µ
nGνσ

n + D̂ν
nGσµ

n + D̂σ
nGµν

n = 0 , (71)

closing it with γµ, it gives the following relation

i∂/Gµν
n = γαqβ

(
Gαβ

n Gµν
n − Gβ[µ

n Gν]α
n

)
− γαi∂[µGν]α

n . (72) {BI}

The equation (69)(70)(72) are the RPI equivalent of the equations of motion (18).

C. Expansion of General currents

In the last section we constructed RPI objects. Here we want to stress the relations
between gauge invariant operators and RPI operators. The most general gauge invariant
basis in SCET up to order λ4 can be built out of this operators:
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where the Dirac structure Ξ depend on the particular phenomenon studied. When we
do an OPE, in general we assign a Wilson coefficient at each gauge invariant operator
and try to find possible constraints imposing that the overall current is invariant under
reparameterization. A second way to find RPI constraints is to build RPI operators using
the RPI objects (28) and the vector momentum i∂µ = (nµ/2)P̄ + Pµ

⊥ + (n̄µ/2)(in · ∂), and
to use them in the OPE. Because each object is RPI by definition, his Wilson coefficient is
disconnected from the others, so the effective number of Wilson coefficients is equal to the
number of independent RPI currents. The number of constraint is equal to the number of
gauge invariant operators minus the number of RPI operators. As shown previously, also the
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n ]EOM for Gµν

n

Collinear Lagrangian Equations of Motion

=
nµ

2

[
P̄igB⊥ν

]
−nν

2

[
P̄igB⊥µ

]
+

[
P̄igB⊥⊥µν

]
− n̄µ

2

nν

2

[
P̄ign · B

]
+

nµ

2

n̄ν

2

[
P̄ign · B

]
+O(λ3) .

(59) {EG}
Using (34), (D8) and (D22) we can write

G(1)µν
n,ω =

nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω , (60)

G(2)µν
n,ω =

1

ω
([Pµ

⊥(igBν
n⊥)ω]− [Pν

⊥(igBµ
n⊥)ω] + [(igBµ

n⊥)ω, (igBν
n⊥)ω]) +

n̄µnν − nµn̄ν

4(n · q) (ign · Bn)ω

+
∑

ωa

iR(1)
n,ω−ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)

−
∑

ωa

(
nν

2(n · q)(igB
µ
n⊥)ωa −

nµ

2(n · q)(igB
ν
n⊥)ωa

)
iR(1)

n,ω−ωa

+p(1)
n

(
nν

2(n · q)(igB
µ
n⊥)ω −

nµ

2(n · q)(igB
ν
n⊥)ω

)
. (61)

We now study the equations of motion of the RPI quark and gauge fields. The collinear
Lagrangian for the quark field is [2]:

Lq = ξ̄n

(
in ·Dn + iD/⊥n

1

in̄ ·Dn
iD/⊥n

)
ξn , (62) {Lagr1}

where a sum over n is implicit. We can write (62) in terms of ψ

Lq = ψ̄niD/n ψn , (63) {lagr2}

the equations of motion for ψ are
D/n ψn = 0 (64) {Eom1}

If we insert the identity WnW†
n and left multiply (64) by W†

n we obtain the equation of
motion for Ψn

D̂/n Ψn = 0 , (65) {Eom2}

where D̂ is the RPI and gauge invariant covariant derivate:

D̂µ
n ≡ eiRnDµ

ne−iRn . (66)

We can write

D̂µ
n = i∂µ + [D̂µ

n] , (67)

and it is easy to proof that

qνGνµ
n = [D̂µ

n] , (68)

so we can write the equation of motion (65) as

i∂/Ψn = qµγ
νGµν

n Ψn . (69) {EOM1}
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where      is gauge invariant and covariant derivative:D̂µ
n

Multiply by      and insert          we get the RPI EOMWn W†
nWn



O(0) =χ̄n1,ω1Ξχn2,ω2

O(1a) =χ̄n1,ω1Ξ
αP⊥†

n1αχn2,ω2

O(1b) =χ̄n1,ω1Ξ
αP⊥n2,αχn2,ω2

O(1c) =χ̄n1,ω1Ξ
β(igB⊥n3β)ω3χn2,ω2

GI BASIS

S =
∑

i

CiOi S =
∑

i

CiOi

# independent 
Wilson coefficients 

 # number of 
independent RPI 

operators
=

Using the RPI basis we find right away all the constraints

O(0a) =Ψ̄n1,ω1Γ(a)Ψn2,ω2

O(0b) =Ψ̄n1,ω1Γ
α
(b)i∂n2,αΨn2,ω2

O(0c) =Ψ̄n1,ω1Γ
α
(c)(−i

←−
∂ n1,α)Ψn2,ω2

O(1a) =Ψ̄n1,ω1Θ(a)ββ′Gββ′

n3,ω3
Ψn2,ω2

RPI and GI BASIS

Reparametrization invariant δRP S = 0

δRP S = δRP

∑

i

CiOi = 0 δRP S = δRP

∑

i

CiOi =
∑

i

CiδRP Oi = 0



Scalar chiral-even up to NLO operator in GI basis

S(q) = C (n · q)JV +
2∑

i=1

Di (qαVα
i ) +

2∑

i=1

D̃i (qαṼα
i ) + E (qαVα

3 )

Scalar chiral-even up to NLO operator in RPI basis
there is only one 

RPI operator

there is only one 
independent Wilson 

coefficient

O(0) = Ψ̄n,ω1q/Ψn,ω2

S(q) =C(ω1, ω2)Ψ̄n,ω1q/Ψn,ω2

=C(ω1, ω2)χ̄n,ω1

n̄/

2
(n · q)χn,ω2

−C(ω1, ω2)
(

χ̄n
n̄/

2
i
←−D/⊥

1
P̄†

)

ω1

q/⊥χn,ωb + C(ω1, ω2)χ̄ω1q/⊥

(
1
P̄

iD/⊥
n/

2
χn

)

ω2

− 2C(ω1, ω2)
(

χ̄n

[
B⊥ · q⊥

1
(n · q)P̄†

])

ω1

n̄/

2
(n · q)χn,ωb

− 2C(ω1, ω2)χ̄ω1

n̄/

2
(n · q)

([
1

(n · q)P̄
B⊥ · q⊥

]
χn

)

ω2

+ 2
∂C(ω1, ω2)

∂ω1
χ̄n,ω1P

†
⊥ · q⊥

n̄/

2
(n · q)χn,ω2 + 2

∂C(ω1, ω2)
∂ω2

χ̄n,ω1

n̄/

2
(n · q)P⊥ · q⊥χn,ω2



J1(ω1,2) =χ̄n̄,ω1γ
µ
⊥χn,ω2

J2(ω1,3,2) =χ̄n̄,ω1n
µ(igB/⊥n )ω3χn,ω2

J3(ω1,3,2) =χ̄n̄,ω1n
µ(igB/⊥n̄ )ω3χn,ω2

J4(ω1,3,2) =χ̄n̄,ω1 n̄
µ(igB/⊥n )ω3χn,ω2

J5(ω1,3,2) =χ̄n̄,ω1 n̄
µ(igB/⊥n̄ )ω3χn,ω2

GI basis RPI basis
J(0)

1 = Ψ̄n̄,ω1γ
µΨn,ω2

J(1)
1 =Ψ̄n̄,ω1q

µq/Ψn,ω2

J(1)
2 =Ψ̄n̄,ω1q/i∂µ

nΨn,ω2

J(1)
3 =Ψ̄n̄,ω1γβGµβ

n,ω3
Ψn,ω2

J(1)
4 =Ψ̄n̄,ω1γβGµβ

n̄,ω3Ψn,ω2

J(1)
5 =Ψ̄n̄,ω1q

µγαqβGαβ
n,ω3

Ψn,ω2

J(1)
6 =Ψ̄n̄,ω1q

µγαqβGαβ
n̄,ω3Ψn,ω2

J(1)
6 =Ψ̄n̄,ω1q

µγαqβGαβ
n̄,ω3Ψn,ω2

J(1)
7 =Ψ̄n̄,ω1q

µq/γαγβGαβ
n̄,ω3Ψn,ω2

J(1)
8 =Ψ̄n̄,ω1γ

µγαγβGαβ
n̄,ω3Ψn,ω2

J(1)
9 =Ψ̄n̄,ω1γαqβi∂µ

nGαβ
n,ω3

Ψn,ω2

J(1)
10 =Ψ̄n̄,ω1γαqβi

←−
∂ µ

n̄G
αβ
n̄,ω3Ψn,ω2

J(1)
11 =Ψ̄n̄,ω1γαqβ

[
i∂µ

n̄G
αβ
n̄,ω3

]
Ψn,ω2

J(1)
12 =Ψ̄n̄,ω1q/γαγβi

←−
∂ µ

n̄G
αβ
n̄,ω3Ψn,ω2

J(1)
13 =Ψ̄n̄,ω1q/γαγβ

[
i∂µ

n̄G
αβ
n̄,ω3

]
Ψn,ω2

CURRENTS AT NLOn-n̄

• as    we take the momentum transfer 

from the virtual photon

• frame where 

• The RPI basis is overcounted

• NO connections

• Also at NNLO there are no connections

q

q⊥ = 0

Important in study 2 jets events where at LO the main operators are

Γµ = {γµ
⊥, γµ

⊥γ5}J(ω1,2) = χ̄n̄,ω1Γ
µχn,ω2



• We constructed a set of RPI objects in SCET

• Using them it is easy to see if there are connections 
coming from RPI

CONCLUSIONS

• In          vector currents we proved that there are no 
connections at NLO and NNLO

n−n̄


